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Abstract: Non-Newtonian fluids are something which require lots of study and research on it flow pattern over the surfaces. This paper 

highlights the laminar flow of non-Newtonian fluids which obeys the power-law model past horizontal flat plate is presented.  The main 

problem considered is that of predicting the drag and rate of heat transfer from an isothermal surface to the fluid. This paper proposes the 

detailed study of the flow past a horizontal flat plate in which the shear stress coefficient is determined exactly by numerical solution of the 

governing equation and approximately by a momentum integral method, analogous to the one developed by Pohlhausen for Newtonian 

fluids. Results obtained are then compared between the exact and approximate methods.The rate of heat transfer for flow past an isothermal 

flat plate is determined by numerical solution of energy equation, approximately by an integral method. Numerical solution of momentum 

and energy equations is obtained by finite difference procedure by using central difference scheme. Results obtained for heat transfer rate by 

numerical method, integral method and Lighthills approximation are compared. 

1 INTRODUCTION 

Due to the importance of applications of non-

Newtonian fluids in industries, processing molten 

plastics, polymers, pulps, slurries, emulsion, etc. 

Considerable efforts have been conducted to 

understand the behavior of non-Newtonian fluids. 

These fluids do not obey the Newtonian postulate that 

the stress tensor is directly proportional to the 

deformation tensor.                                                                                                                                                   

In non-Newtonian fluid there is no definite 

relationship between stress tensor and the deformation 

tensor valid for all fluids which lead to the difficulty 

in the theoretical study of non-Newtonian fluid 

mechanical phenomenon and in the correct 

interpretation of experimental results. This means that 

except for simple cases, a generalized form of the 

Navier-Stokes equations, obeyed by all fluids in 

motion, cannot be written down. 

There are number of models suggested for the non-

Newtonian fluids but Power-law model is a most 

popular and simplest model. Power-law model is 

adequate for many non-Newtonian fluids and it is 

widely used. 

The momentum equation is strongly non-linear and 

hence similarity solution for the heat transfer is 

difficult to obtain. The similarity can be obtained only 

for infinite Prandtl numbers i.e. when thermal 

boundary layer thickness is much smaller than the 

velocity boundary layer. 

Acrivos, Shah, Petersen [1] were the first to study 

momentum and heat transfer in laminar boundary-

layer flows of non-Newtonian fluids which obeys 

power law model past external surfaces. They 

considered how to predict the drag and rate of heat 

transfer from an isothermal surface to the fluid. Local 

heat transfer rates were estimated using Lighthills 

approximate formula, on the assumption that Prandtl 

number → ∞, i.e. the thermal boundary-layer is much 

thinner than the shear layer. 

Ames and Lee [2] have reviewed the existing 

important similar solutions available in literature, for 

boundary-layer flows of non-Newtonian fluids. They 

have applied transformation group method to obtain 

similarity variables and equations for various types of 

flows, e.g. Falkener-Skan flows and Goldstein flows. 

The numerical solutions of the forced convection of 

power-law fluids for right angle wedge with an 

isothermal surface have been presented. 

A. K. Kulkarni, H. Jacobs, J. Hwang [3] obtained a 

similarity solution for a natural convection flow on a 

heated isothermal wall suspended in a quiescent, 

thermally stratified atmosphere. They also represented 

the case for an isothermal plate in a linearly stably 

stratified atmosphere. R. henkes, C. Hoogendoorn [4] 

determined numerically similarity solution of the 

laminar natural convection boundary layer equations 

for air for a fixed wall and variable environment 

temperature.A theoretical analysis of natural 

convection to power-law fluids from a heated vertical 

plate in a stratified environment was first explained by 

Lee, Gorla, and Pop [5]. 

Kumari, Pop [6] did the theoretical analysis of laminar 

free convection flow over a vertical isothermal wavy 

surface in non-Newtonian power law fluids. An 

implicit finite difference method known as Keller-Box 

method used to solve the boundarylayer equations. A 

sinusoidal surface used for analysis. They have shown 

that the local Nusselt number varies periodically along 

the wavy surface.The transient convection heat 

transfer in a power law fluid is of major interest and a 

numerical solution of the appropriate unsteady 

boundary layer equations presented by Haq, 

Kleinstreuer [7].Ece and Buyuk [8] presented the 

similarity solution for power law fluids from a vertical 

plate under mixed thermal boundary conditions.. M. J. 

Huang, J. Huang, C. K. Chen [24] studied the effects 

of Prandtl number on free convection heat transfer 

from a vertical plate to a non-Newtonian fluid. The 

analysis includes the inertia force in the momentum 

equation with a finite Prandtl number. 

 A theoretical analysis for forced convection heat 
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transfer from external surfaces immersed in non-

Newtonian fluids of power law model is done by A. 

Nakayama, A. V. Shenoy and H. Koyama [9]. F. N. 

Lin and S. Y. Chern [10] presented a solution for the 

two-dimensional and axis-symmetrical laminar 

boundary-layer momentum equation of power-law 

nonNewtonian fluid. They used Merk-Chao series 

solution method. H. Pascal [23] presented similarity 

solutions to some unsteady flows of nonNewtonian 

fluids of power law behaviour. He addressed non-

linear effects in some unsteady flows. From the 

solutions the conditions for the existence of travelling 

wave characteristics are found for the velocity, shear 

stress and pressure distributions. H. Aderson, T. 

Toften [26] explained a numerical solution for laminar 

boundary layer equations for power law fluid using 

implicit finite difference keller box scheme.R. 

Mahalingam [28] calculated local rates of heat 

transfer coefficient for non-Newtonian power law 

Pseudoplastic liquids in laminar flow in circular 

conduits. A. V. Shenoy[29] described criteria for 

transition to turbulence during natural convective heat 

transfer from a flat vertical plate to power law fluid. 

2 NON-NEWTONIAN FLUIDS 

Non Newtonian fluids are those fluids for which the 

flow curve(τ versus du/dy) is not linear through the 

origin at a given temperature and pressure. These 

materials are commonly divided into three broad 

groups. 

• Time-independent fluids, 

• Time-dependent fluids, 

• Viscoelastic fluids. 

Fig. Non-Newtonian flow between two parallel plates 

 

 

3 ANALYSIS OF FLOW BEHAVIOUR 

Consider the laminar flow of a non-Newtonian fluid 

past the arbitrary two-dimensional surface. 

Assumptions:  

i. Constant property fluid.  

ii. Dissipation is neglected.  

iii. Two dimensional and steady.  

iv. Gradients in the normal direction are much larger 

than the gradients in the transverse, or x, direction. 

 

Power law or Ostwald De Waele model is the most 

generalized model for non-Newtonian fluids.  

  

Here, apparent viscosity  is defined as, 

  

Where m and n are the two parameters. 

If n = l then  = m 

Where m is similar to the viscosity of the fluid and 

model shows the Newtonian behaviour. 

If n>1, then  increases with increasing shear rate 

and the model shows the Dilatant behaviour. 

  

If n<1, then  decreases with increasing shear rate 

and the model shows the Pseudo-plastic behaviour. 

  

Eyring model is a two-parameter model. The equation 

of Eyring model is as follow  
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 Where A, B are the two parameters. In Eyring model, 

if → 0 which means very low shear forces, we 

have 

 
  

Therefore, as  → 0, the model shows 

Newtonian behaviour

 
 

 Here, viscosity =  If  is very large, the 

model shows Non-Newtonian behaviour as shown 

Fig. 20.3  

 
Fig. Shear stress vs. shear strain diagram for Eyring 

model 

 

 Therefore, Eyring model may be used for a fluid 

which shows Newtonian behaviour at low shear rates 

and non- Newtonian behaviour at high shear rates. 3. 

Ellis model Ellis model is a three-parameter model. 

The equation of this model is as follows  

Here, ,  and  are the three parameters . 

 Here, we consider some special cases, 1. 

If then Equation (20.11) reduce to  

 or  

 Which is same as Newton’s law of viscosity 

with  as the viscosity of the fluid.  

2. If , then 

 

 
 

 Which is similar to a Power law model 3. If 

>1 and  is small then the second term is 

approximately zero and equation reduces to  

 Which is similar to Newton’s law of viscosity. 4. 

If <1 and  is very large, then again, second 

term is negligible and we have   

 
 Which again shows Newtonian behaviour. Therefore, 

Ellis model may be used for fluids which show 

Newtonian behaviour at very low and very high shear 

stresses, but non-Newtonian behaviour at intermediate 

value of shear stresses.  

 
Fig. Shear stress vs. shear strain diagram for Ellis 

model 
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 This type of behaviour may be shown by some 

polymer melts 4. Reiner Philipp off model this is also 

a three-parameter model. The equation of Reiner 

Philipp off model is as follows,  

 

 Where, ,  and  are the three 

parameters. 

In Reiner Philipp off model, if is very large, the 

equation reduces to, 

 or  

 Which is same as the Newton’s law of 

viscosity, If  is very small then equation reduces 

to  

 Or  

 Which is also same as the Newton’s law of viscosity. 

Therefore, Reiner Philipp off model may be used for a 

fluid which shows Newtonian behaviour at very low 

and very high shear stresses but non-Newtonian 

behaviour for intermediate values of shear stress. 

Here,  and  represent the viscosity of fluid at 

very low and very high shear stress conditions 

respectively. 5. Bingham Fluid model Bingham fluid 

is special type of fluid which require a critical shear 

stress to start the flow.The equation of Bingham fluid 

model are given 

below 

 if 

  if 

 or 

 A typical shear stress vs. shear rate diagram for a 

Binghum model is shown below  

 
Fig. Shear stress vs. shear strain diagram for Bingham 

model 

 

 

Fig. Variation of entropy 

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 
ISSN 2229-5518  

459

IJSER © 2017 
http://www.ijser.org

IJSER



 

Fig. Velocity profiles showing effects of λ and 

different power-law fluids 

 

Fig. The shear rate, dynamic viscosity and volumetric 

flow of a polystyrene solution  

 

4 CONCLUSION 

The following conclusions can be drawn from the 

analysis- 

• For n < 2 boundary layer type of flow can 

be obtained if ∞ is large and therefore the 

Reynold number is made sufficiently large.  

• For n > 2 laminar boundary layer flows are 

not of much practical interest because their 

range of validity appears to be limited. 

• For Pseudoplastic fluids as n increases 

velocity gradient increases while for 

dilatant fluids as value of n decreases 

velocity gradient decreases. 

• Shear force decreases with increase in value 

of n for Pseudoplastic as well as dilatants 

fluids. 

• Rate of heat transfer calculated by Integral 

method shows some discrepancies 

especially in the region of small flow 

behaviour index (n < 0.5). 

• Local Nusselt number increases for 

Pseudoplastic fluids and decreases for 

Dilatant fluids from near the leading edge to 

the downstream position for same value of 

Prandtl number while for Newtonian fluids 

it remains constant. 

• As Prandtl number increases rate of heat 

transfer increases for Pseudoplastic fluids, 

Newtonian fluids and Dilatant fluids. 

• Asymptotic method holds good for large 

Prandtl number i.e. when thermal boundary 

layer is much thinner than the shear layer. 
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